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Abstract. Let F be the category with the set of objects N and morphisms given
by the functions between the standard finite sets of the corresponding cardinalities.
Let Jf : F → Sets be the obvious functor from this category to the category of
sets. In this paper we construct, for any Jf -relative monad RR and any left RR-
module LM, a C-system C(RR,LM) and explicitly compute the action of the four
B-system operations on its B-sets.

In the introduction we explain in detail the relevance of this result to the con-
struction of the term C-systems of type theories.
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1. Introduction

The first few steps in all approaches to the set-theoretic semantics of dependent
type theories remain insufficiently understood. The constructions which have been
worked out in detail in the case of a few particular type systems by dedicated authors
are being extended to the wide variety of type systems under consideration today by
analogy. This is not acceptable in mathematics. Instead we should be able to obtain
the required results for new type systems by specialization of general theorems and
constructions formulated for abstract objects the instances of which combine together
to produce a given type system.

An approach that follows this general philosophy was outlined in [35]. In this
approach the connection between the type theories, which belong to the concrete
world of logic and programming, and abstract mathematical concepts such as sets or
homotopy types is constructed through the intermediary of C-systems.

C-systems were introduced in [12] (see also [13]) under the name “contextual cate-
gories”. A modified axiomatics of C-systems and the construction of new C-systems
as sub-objects and regular quotients of the existing ones in a way convenient for use
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in type-theoretic applications are considered in [43]. A C-system equipped with ad-
ditional operations corresponding to the inference rules of a type theory is called a
model or a C-system model of these rules or of this type theory. There are other
classes of objects on which one can define operations corresponding to inference rules
of type theories most importantly categories with families or CwFs. They lead to
other classes of models.

In the approach of [35], in order to provide an interpretation for a type theory
one first constructs two C-systems. One C-system, which we will call the proximate
or term C-system of a type theory, is constructed from formulas of the type theory
using the main construction of the present paper. The second C-system is constructed
from the category of abstract mathematical objects using the results of [37]. Both C-
systems are then equipped with additional operations corresponding to the inference
rules of the type theory making them into models of type theory. The model whose
underlying C-system is the term C-system is called the term model.

A crucial component of this approach is the expected result that for a particular
class of inference rules the term model is an initial object in the category of mod-
els. This is known as the Initiality Conjecture. In the case of the pure Calculus of
Constructions with a “decorated” application operation this conjecture was proved in
1988 by Thomas Streicher [32]. The problem of finding an appropriate formulation
of the general version of the conjecture and of proving this general version will be the
subject of future work.

For such inference rules, then, there is a unique homomorphism from the term C-
system to the abstract C-system that is compatible with the corresponding systems
of operations. Such homomorphisms are called representations or interpretations of
the type theory. More generally, any functor from the category underlying the term
C-system of the type theory to another category may be called a representation of
the type theory in that category. Since objects and morphisms of term models are
built from formulas of the type theory and objects and morphisms of abstract C-
systems are built from mathematical objects such as sets or homotopy types and
the corresponding functions, such representations provide a mathematical meaning
to formulas of type theory.

The existence of these homomorphisms in the particular case of the “standard uni-
valent models” of Martin-Löf type theories and of the Calculus of Inductive Construc-
tions (CIC) provides the only known justification for the use of the proof assistants
such as Coq for the formalization of mathematics in the univalent style [38], [45].

Only if we know that the initiallity result holds for a given type theory can we claim
that a model defines a representation. A similar problem also arises in the predicate
logic but there, since one considers only one fixed system of syntax and inference rules,
it can and had been solved once without the development of a general theory. The
term models for a class of type theories can be obtained by considering slices of the
term model of the type theory called Logical Framework (LF), but unfortunately it
is unclear how to extend this approach to type theories that have more substitutional
(definitional) equalities than LF itself.
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A construction of a model for the version of the Martin-Löf type theory that is used
in the UniMath library [45], [38] is sketched in [22]. At the time when that paper
was written it was unfortunately assumed that a proof of the initiallity result can be
found in the existing body of work on type theory which is reflected in [22, Theorem
1.2.9] (cf. also [22, Example 1.2.3] that claims as obvious everything that is done in
tens of different papers by computer scientists, the present paper and in [43]). Since
then it became clear that this is not the case and that a mathematical theory leading
to the initiallity theorem and providing a proof of such a theorem is lacking and needs
to be developed.

As the criteria for what constitutes an acceptable proof were becoming more clear
as a result of continuing work on formalization, it also became clear that more detailed
and general proofs need to be given to many of the theorems of [22] that are related to
the model itself. For the two of the several main groups of inference rules of current
type theories it is done in [42], [44] and [40]. Other groups of inference rules will be
considered in further papers of that series.

That work concerned the construction of the second, “abstract”, C-system model
used in the construction of a representation.

The work done in this paper provides the first step in the construction of the
“concrete” term C-system model. The result of our construction is equivalent to
the results of constructions sketched by earlier authors [21]. The main innovation,
other than the first careful mathematical proofs of all the required assertions, is the
observations that one can take all raw judgements as the source for the construction
and build from them a C-system. The term C-system of a type theory with a given raw
syntax is then a sub-quotient of the raw syntax C-system. The raw syntax C-system
can be either defined directly in a way that allows for a straightforward rigorous
verification of all the axioms, see Remark ??, or understood from the perspective of
the abstract mathematical theory of C-systems as a particular case of a more general
construction of the presheaf extensions of C-systems. In this paper we follow the
second path that also allows us to connect our construction to the main constructions
of [41] and [39].

The description of a type theory in a modern paper is usually given in the form of
a list of “inference rules” that may look like, for example, this one:

(1) [2017.03.02.eq1]
Γ, x : A ` B type

Γ `
∏

x : A,B type

These inference rules are formulated in terms of five kinds of “sequents” originally
introduced by Per Martin-Löf in [26, p.161]1 . These sequents are sequences of ex-
pressions of the form

1This paper is highly recommended. It is a foundational one for many ideas of type theory and
for the modern approach to constructive mathematics in general.
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[2017.02.06.eq1]x0 : T0, . . . , xn−1 : Tn−1B ok(2)
[2017.02.06.eq2]x0 : T0, . . . , xn−1 : Tn−1B T type(3)
[2017.02.06.eq3]x0 : T0, . . . , xn−1 : Tn−1B t : T(4)
[2017.02.06.eq4]x0 : T0, . . . , xn−1 : Tn−1B T ≡ T ′(5)
[2017.02.06.eq5]x0 : T0, . . . , xn−1 : Tn−1B t ≡ t′ : T(6)

Here x0, . . . , xn−1 are names of variables, Ti is an expression with free variables from
the set {x0, . . . , xi−1}, and T and t are expressions with free variables from the set
{x0, . . . , xn−1}. If one wants to emphasize that a variable x may appear as a free
variable in the expression T one writes T (x), but in most cases the set of allowed free
variables in an expression should be inferred from its position in the sentence.

In most modern papers on type theory the symbol ` is used where we use the
triangle symbol B . We made this choice because the meaning of the former symbol
in type theory may conflict with its meaning in logic.

The part of a sequent to the left of B is called the context and the part to the
right of this symbol is called the judgement. When the names of variables and the
expressions of the context are not important or can be inferred from some data or
conventions, it is customary to denote the context by a capital Greek letter such as
Γ or ∆.

There are some equivalent versions of the Martin-Löf’s approach. For example,
Martin Hofmann, in [21], considers six kinds of judgements adding the equality of
contexts, B Γ ≡ ∆, as a separate kind.

We, as will be seen below, will consider only four kinds of sentences deducing the
ΓB T type kind from the ΓB ok kind.

The meaning of sentences of various kinds is as follows. The first two kinds are
closely related. The sentence B ok is always valid, the sentence (2) for n ≥ 1, is
valid if and only if the sentence

x0 : T0, . . . , xn−2 : Tn−2B Tn−1 type

is valid and xn−1 is a name of free variable that is not an element of the set {x0, . . . , xn−2}.
From this rule we conclude that (2) is valid if and only if all xi are names of free vari-
ables, xi 6= xj for i 6= j, and the sentences in the following sequence are valid:

B T0 type

x0 : T0B T1 type

. . .

x0 : T0, . . . , xn−2 : Tn−2B Tn−1 type

A sentence of the form B T0 type asserts that T0, which must be a closed expression
according to the rules stated above, is a valid expression that describes a type in the
system. For example, in any of the Martin-Löf type theories, there is a type N, which
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is called the type of natural numbers. The formal equivalent of this assertion is that
N is an expression and the sentence B N type is valid.

One often uses the words “type”, “type expression” and “expression that describes
a type” interchangeably. The same applies to “element”, “element expression” and
“expression that describes an element”.

A sentence of the form x0 : T0B T type asserts that T0 is a valid, closed, type
expression and T is an expression with the only possible free variable being x0 that
describes a family of types parametrized by T0. For example, in any of the Martin-Löf
type theories, given a type T and two elements t, t′ : T of T , there is a type Id T t t′
whose elements are to be thought of as constructions of equalities between t and t′ in
T . Correspondingly, the sentence x0 : T B Id T x0 x0 type is valid if and only if the
sentence B T type is.

Sentences of the form (3) with n > 1 describe “iterated type families”. For example,
for n = 2, T0 is a type, T1 is a type family parametrized by T0 and T2, which is an
expression that may contain x0 and x1 as free variables, is a type family with two
parameters x0 : T0 and x1 : T1(x0).

Let Γ = (x0 : T0, . . . , xn−1 : Tn−1). If the sentence (4) is valid then so is the
sentence ΓB T type. A sentence (4) with n = 0, that is a sentence of the form
B t : T , asserts that T is a valid (closed) type expression and t is a valid (closed)
expression that describes an element of type T . For example, the element 0 of N in
the Martin-Löf type theories is denoted by O so that the sentence B O : N is valid
in all these theories. A sentence of the form (4) with n = 1 describes a family T of
types parametrized by T0 together with a “section” of this family, that is, a family of
elements t(x0) of types T (x0) for all x0. If T does not contain x0 then the family of
types is constant and the sentence (4) is a syntactic representation of a function from
T0 to T .

If the sentence (5) is valid than so are the sentences ΓB T type and ΓB T ′ type.
The validity of (5) asserts that the type expressions T and T ′ are definitionally equal
in the context Γ. The similar meaning is assigned to sentences of the form (6).
Definitional equality of type expressions can be used to define definitional equality
of contexts. Namely, one defines two contexts x0 : T0, . . . , xn−1 : Tn−1 and x0 :
T ′0, . . . , xn−1 : T ′n−1 to be definitionally equal if the sentences in the following sequence
are valid

[2017.04.07.eq1]B T0 ≡ T ′0(7)
x0 : T0B T1 ≡ T ′1(8)

. . .(9)
x0 : T0, . . . , xn−2 : Tn−2B Tn−1 ≡ T ′n−1(10)

This provides us with the concept of definitional equality of sentences of the form
(2). Two such sentences are called definitionally equal if their contexts are.

Two sentences of the form (3) ΓB T type and Γ′B T ′ type are definitionally equal
if Γ ≡ Γ′ and ΓB T ≡ T ′.
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Similarly, one can use definitional equality of type expressions and definitional
equality of element expressions defined by sentences of the form (5), and (6) to define
definitional equality of sentences of the form (4). Two such sentences ΓB t : T and
Γ′B t′ : T ′ are called definitionally equal if Γ ≡ Γ′ and the following two sentences
are valid:

ΓB T ≡ T ′

ΓB t ≡ t′ : T

It should be immediately clear from the asymmetry of these rules that in order for
the definitional equality relations on sentences of the form (2), (3) and (4) to be
equivalence relations the sets of sentences of various kinds should satisfy more condi-
tions than the ones that we have mentioned so far. These conditions are among the
conditions ?? whose mathematical meaning is established in this paper.

To speak about the mathematical meaning of the conditions that the valid sentences
should satisfy, we need to find a way to view the structure formed by the five kinds
of sentences as a mathematical object and to describe, and analyze, a construction
that generates a C-system from such an object.

... that were specified through their raw syntax and typing algorithms or, exten-
sionally speaking, the subsets of well-typed context-judgement pairs.

The first step towards it is to find a way to view “expressions” as mathematical
objects.

In practice, what are “expressions” from which the sentences of a type theory are
formed is most likely to be specified in detail when this type theory is used as a basis
of a computer proof assistant. Depending on the programming language on which the
proof assistant is written and on the personal tastes of the developers “expressions”
will be represented as elements of different datatypes. They may be represented as
actual strings of characters or as trees with additional labels at nodes and edges or
as something else entirely. While each of these representations can be given a precise
mathematical form it would be clearly wrong to make the mathematical theory of
type theories dependent on which of the representations is chosen. Therefore, we
need a concept of an abstract expression, or, as we will see below, two concepts one
for abstract element expressions and one for abstract type expressions.

This problem has been addressed by many authors, first in the context of algebraic
expressions and later in the context of expressions with binders, that is, expressions
that may contain bound variables. As far as we know, the first mathematical abstrac-
tion in the case of expressions with binders was described by Fiore, Plotkin and Turi
in [16]. Later a different and more convenient for mathematicians abstraction was
described by Hirschowitz and Maggesi in a series of papers including [19]. The two
approaches were shown to be equivalent in [7], [8] using the concept of a well behaved
functor. The proof of equivalence in [7], [8] was based on the important observation
that the monoids of [16] are particular cases of relative monads.

These results would have closed the issue and we would have probably used in this
paper the Hirschowitz and Maggesi concept of an abstract expression based on the
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concept of a monad if not for the fact that the proof of the equivalence uses the axiom
of choice.

This may be the place to say a few words about the intended meta-theories of
the present paper. By an intended meta-theory of a paper we mean a foundation of
mathematics in which its results can be stated and proved. It has become customary
not to specify intended meta-theories for papers in pure mathematics due to the tacit
assumption that this meta-theory is the Zermelo-Fraenkel set theory with Axiom of
Choice (ZFC). Here ZFC, or any other foundation that we may mention, is consid-
ered as a body of mathematical knowledge that includes both the underlying formal
theory and the dictionary that is needed to translate informal mathematics into the
statements about this formal system. In the case of the ZFC, the formal deduction
system is classical predicate logic with a distinguished theory and statements of in-
formal mathematics are translated into the provability statement applied to various
formulas of this theory.

We intend two meta-theories for the present paper. The first one is the usual
ZFC with a Grothendieck universe U . The second one is a univalent foundation
called UniMath. We consider ZFC to be the primary meta-theory and UniMath a
secondary one. That is, we take care to adapt our definitions and proofs precisely for
the ZFC while accepting that UniMath formalization will require some small degree
of modification.

Having UniMath as a secondary meta-theory imposes a number of strong restric-
tions on the features of the ZFC that we can and can not use. Most notably, we can
not use the law of excluded middle and we can not use the axiom of choice.

Let us go back to the concept of an abstract expression. Let us consider the case
of algebraic expressions first. Modern mathematical theory of algebraic expressions
has been developed at least as far back as the 1963 Ph.D. thesis of Bill Lawvere [24].
However, our interest in having the theory extended later to operations that bound
variables, such as the ∀ quantifier, together with the need to have our approach
adapted for a constructive meta-theory bring forward aspects of this theory that are
easy to miss otherwise.

Systems of algebraic expressions are specified by algebraic signatures - pairs, con-
sisting of a set Op, called the set of operations, and a function Ar : Op → N, called
arity. Given a signature Sig and a set V such that V ∩ Op = ∅ one can define, for
any X ⊂ V , the set Exp(X) of expressions relative to Sig with (free) variables from
X. Note that when we write Exp(X) we assume that the signature Sig and the set
V have been fixed.

There are many different families of sets Exp(X) whose elements may be called
expressions. For example, one can use a subset of the set of sequences (lists) of
elements of Op∪X. Alternatively, one can use some axiomatization of planar rooted
trees with labels from Op∪X on the nodes. Translating from a representation of the
first kind into a representation of the second is done, in the concrete word of computer
programs, by programs called parsers and there is a beautiful mathematical theory
behind it that many of us are robbed of the joy of learning.
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Let U be a universe that contains Op, V , and Exp(X) for all X ⊂ V . Let Sets(2V )
be the category of sets whose set of objects is 2V , Sets(U) the category of sets whose
set of objects is U , and JV : Sets(2V )→ Sets(U) the inclusion functor.

We may consider Exp as a function 2V → U . In the chosen representation of
expressions one can construct the substitution operation that for any X, Y ⊂ V and
f : X → Exp(Y ), defines a function f ∗ : Exp(X) → Exp(Y ). In addition, for any
X ⊂ V one can define a function ηX : X → Exp(X). The triple (Exp, η,−∗) satisfies
the conditions of Definition 2.5 making it into a JV -relative monad.

This is how relative monads appear in the theory of expressions with variables.

Next, following [16], we let F denote the category with the set of objects N and
the set of morphisms

(11) [2017.02.24.eq1]Mor(F) = ∪m,nFun(stn(m), stn(n))

where stn(m) = {i ∈ N | i < m} is our choice for the standard set with m elements
and where for two setsX and Y , Fun(X, Y ) is the set of functions fromX to Y defined
as in [11, p.81] such that each function has a well defined domain and codomain. Then
the union in (11) is disjoint and

MorF(m,n) = Fun(stn(m), stn(n))

Let Jf : F → Sets(U) be the functor given by n 7→ stn(n) on objects and by the
inclusion of the sets of morphisms.

Assume that N ∩ Op = ∅. Then our previous construction applies to V = N.
Consider the functor Φ : F → Sets(2N) that takes n to stn(n) and that is again the
inclusion of the sets of morphisms.

Relative monads on a functor C1 → C2 can be precomposed with functors C0 → C1.
See Construction 2.15. Precomposing the monad of expressions ExpN with Φ and
observing that Φ ◦ JN = Jf we obtain, for any algebraic signature Sig such that
Op ∩N = ∅, a Jf -relative monad that we denote by ExpSig.

This is how the Jf -relative monads appear in the theory of algebraic expressions.

Note that that up to this point our constructions were completely elementary.

Suppose now that we want to associate with the family of sets Exp(X) not a
relative monad but a usual monad. First we would need to extend the function
Exp : 2V → U to a function U → U . There is no way of doing it in the UniMath and
I do not know of any way of doing it in any constructive foundation. The best one
could achieve is to construct a function Exp′ : U → U and a family of isomorphisms
φV : Exp(X)→ Exp′(X) for X ⊂ V . This requires developing a constructive theory
of filtered colimits and functors that commute with such colimits and it is not an
obvious task.

Alternatively, one can build a monad Exp′′ corresponding to a signature directly by
constructing the set Exp′′(X) as an initial algebra over the functor FSig,X : Sets(U)→
Sets(U) given on objects by the formula

FSig,X(A) := X
∐

(
∐
O∈Op

AAr(O))
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Constructing initial algebras for FSig,X also requires the use of colimits, but only
ω-colimits, that is, colimits of sequences, see e.g. [2]. The monad structure on the
family of sets Exp′′(X) can be constructed from the initial algebra structures, see
[10] or [27, Th.3, p.161]. One is then left with the task of establishing a family of
bijections between Exp′′(X) and Exp(X) for X ⊂ V that are compatible with the
substitution which can be done but requires extra work.

In general, a monad on Sets(U) is a richer object than a Jf -relative monad and
there may be situations when a monad associated with a signature is required as an
intermediary between the syntax and an abstract mathematical construction. How-
ever, in our case, when we want to construct from the syntax a C-system, a Jf -relative
monad is precisely what we need, so that even when we have a monad at our disposal
we have to restrict it to a Jf -relative monad first in order to perform our construction.

This is why we use Jf -relative monads and not the usual monads.

Let us now explain another very important point. At the very start of our expla-
nation of how the Jf -relative monads are related to expressions we said that we will
consider algebraic expressions. However, the expressions that appear in the sentences
of type theories are often not algebraic because they contain operations that bound
some of the variables in their arguments. For example, the expression

∏
x : A,B

that appear in (1) can be rewritten as
∏

(A, x.B) which makes it visible that it is the
result of an operation

∏
applied to two arguments A and B and that this operation

binds one variable, here called x, in its second argument.

Expressions that contain operations that may bound variables in their arguments
are called expressions with binders.

Expressions with binders are specified by binding signatures - pairs consisting of
a set of operations Op and the arity function Ar : Op → Fseq(N). Here Fseq(N)
is the set of finite sequences of elements of N. The set N is considered as a subset
of Fseq(N) through the embedding taking d to the sequence (0, . . . , 0) of length d.
This defines an inclusion of algebraic signatures into binding signatures. The earliest
mention of the concept equivalent to the binding arity that we know of is in [1]. The
meaning of an operation E with the algebraic arity d is that E has d arguments.
The meaning of an operation E with the binding arity (i1, . . . , id) is that E has d
arguments and binds ik variables in its k-th argument.

To apply an operation Op with arity (n0, . . . , nd−1) to expressions E0, . . . , Ed−1

one has to specify, in addition to the expressions themselves, d sequences, of lengths
n0, . . . , nd−1 respectively, of names of variables. These sequences will show which of
the variables are bound in each argument.

The best known examples of operations with binders are the quantifiers ∀ and ∃ of
predicate logic and the λ-abstraction of the (untyped) lambda calculus [14],[9]. All
three of these operations have arity (1), that is, they have one argument in which
they bind one variable.

To get an example with arity (2) one may consider the operation that one gets by
applying an operation of arity (1) twice.
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Consider expressions formed by operations with binders applied to variables. For
example, consider expressions generated by one operation of arity (1) that we will
call λ. Every such expression is of the form

E = λxn−1.λ xn−2. . . . .λ x0.x

Here xn, . . . , x0 are bound variables. We do not assume that xi 6= xj for i 6= j or
that xi 6= x. In particular x is a free variable if xi 6= x for all i ≥ 0 and a bound one
otherwise. The usual, but hard to formulate precisely, rules of α-equivalence (see e.g.
[9, Def. 2.1.11, p.26]) imply that if we rename the bound variables in any way that
preserves the rightmost occurrence of x among the xi’s then the resulting expression
will be α-equivalent to the original one. In particular, we can always rename xi such
that xi 6= xj for i 6= j and there is an most one k such that xk = x. If such a k exists
then E has no free variables and if it does not then E has one free variable x.

If x is a free variable then we can substitute another expression E ′ of the same form
for x. However, we can not do it directly. Instead we have to use something called
the capture avoiding substitution to avoid the “capture” of variable names by binders.
For example, let E = λx0.x, where x is free, and E ′ = x′. Then we have two cases -
if x0 6= x′ then we can directly substitute E ′ for x and E[E ′/x] = λx0.x

′. If x0 = x′

we have first to rename x0 into x′0 such that x′0 6= x′ and then to substitute, obtaining
E[E ′/x] = λx′0.x

′. If we used direct substitution the resulting operation would not
respect the α-equivalence. The capture avoiding substitution does.

One shows, and it should be clear from the above that it is not easy, that for any
binding signature (Op,Ar) one can define, for expressions constructed using opera-
tions of this signature and names of variables from a given set V , which occurrences of
variable names among the arguments of the operations are free and which are bound.
From this one can define, for any subset X of V , the set Exp·(X) of expressions with
free variables from X. Next one can define the concept of α-equivalence on each of
the sets Exp·(X) and define the sets Expα(X) of α-equivalence classes of expressions
with free variables from X. Most definitions of α-equivalence require V to be a set
with an additional operation that for every finite subset of V gives an element in the
complement to this subset. Let us call it a freshness operation. Some approaches to
the α-equivalence and further constructions discussed below, notably the approach
through the nominal sets [29], may only require that for any finite subset of V there
exist an element in the complement to this subset. In the latter case we will say that
V has the freshness property. In the ZFC a set has the freshness property if and only
if it is infinite. In constructive meta-theories the situation may be more involved and
it is convenient to have a special name for this particular property.

If V has the freshness property one can define, and again it is not at all easy, the
simultaneous capture avoiding substitution of expressions Ex ∈ Exp·(Y ), x ∈ X,
for the free variables of an expression E ′ ∈ Exp·(X) such that it is compatible with
the α-equivalence. After the passage to the α-equivalence classes these constructions
become equivalent and one obtains, for any function X → Expα(Y ) and an element
of Expα(X), an element of Expα(Y ). In addition one has, for any X ⊂ V , a function
X → Expα(X).
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This brings us again to a structure of the same form as we obtained in the case
of algebraic operations - a JV -relative monad, where JV is the obvious functor from
Sets(2V ) to Sets(U). Performing the same construction as the one described above
in the case of algebraic expressions one obtains from a JN-relative monad, a Jf -
relative monad ExpSig. This is a direct generalization of the construction that we
described previously from algebraic expressions to expressions with binders. The
main idea behind this generalization goes back to Fiore, Plotkin and Turi [16] where
structures equivalent to the Jf -relative monads are introduced under the name of
abstract clones.

This is how the Jf -relative monads appear in the theory of expressions with binders.

Let us calculate what we get from this construction when the signature is given by
one operation λ with the arity (1). The expressions then are the expressions that we
considered above. We have seen that

Expα(∅) = {an,k |n ∈ N, k = 0, . . . , n− 1}

where an,k is (the equivalence class of) the expression with n λ-abstractions such that
k is the smallest index satisfying xk = x.

Next, we know that

Expα({x}) = Expα(∅) ∪ {bn(x) |n ∈ N}

where bn(x) is the expression with n λ-abstractions ending with x and such that
xi 6= x for all n− 1 ≥ i ≥ 0. We have to add Expα(∅) because an expression without
free variables is an expression with free variables from the set {x}.

Finally, for a general X ⊂ V we have

Expα(X) = Expα(∅) ∪ (∪x∈X{bn(x) |n ∈ N})

and the union on the right hand side is disjoint.

The capture avoiding substitution in the case of one free variable is of the form

bn(an′,k′/x) = an+n′,k′

bn(bn′(x
′)/x) = bn+n′(x

′)

For many free variables the substitution is determined by the case of one free variable
because in any one expression there is at most one free variable.

It is easy to see that the Jf -monad that we obtain in this case is isomorphic to the
Jf -monad defined by the algebraic signature with operations ak, k ∈ N and b where
the arity of ak is 0 and the arity of b is 1. The elements corresponding under this
isomorphism to an,k are bn(ak) and the elements corresponding to bn(x) are bn(x).

Church’s famous λ-calculus starts with the system of abstract expressions corre-
sponding to two operations ap and λ with the arity of ap being (0, 0) and the arity of
λ being (1). Operation ap is called application and is usually denoted using the infix
notation with the empty operation symbol, that is, ap(E,E ′) is denoted E E ′.

I do not know of an algebraic representation similar to what we have described
above for the free Church’s λ-expressions, that is, for the Jf -monad corresponding



12 VLADIMIR VOEVODSKY

to the binding signature

SigΛ = ({ap, λ}, Ar(ap) = (0, 0), Ar(λ) = (1))

More generally, one may ask if for any binding signature Sig one may construct
an algebraic signature Alg(Sig) and an isomorphism between the Jf -relative mon-
ads corresponding to Sig and Alg(Sig) as we have done in the case when Sig =
({λ}, Ar(λ) = (1)).

To obtain the actual λ-calculus, or more specifically, the ληβ-calculus, one has to
add to the system of expressions defined by SigΛ two relations that are called the
β- and the η-reductions. The fact that one still gets a Jf -monad structure after
passing to the equivalence classes under the equivalence relation generated by these
“reductions” requires a proof.

It appears that the Jf -monad, corresponding to the ληβ-calculus has an algebraic
presentation closely related to the combinatory logic of Schönfinkel [30] (translated in
[33]) and Curry [15]. However many subtle difficulties arise in making it precise (cf.
[31]) and we know of no theorem asserting such a presentation in terms of relative
monads or monads.

This is how the Jf -relative monads corresponding to binding signatures relate to
the Jf -relative monads corresponding to algebraic signatures.

What we said about the direct extension of ExpSig from a Jf -relative monad to a
monad immediately generalizes from the algebraic case to the case of operations with
binders.

Also generalizes the discussion about the possibility to construct a monad cor-
responding to the signature directly using category theory. The beginnings of this
generalization can be see in [16]. It is highly non-trivial. Operations that bind vari-
ables change the set of free variables e.g for x ∈ X, the operation λx can be seen
as an operation from Exp(X

∐
{x}) to Exp(X). Because of this, the individual sets

Expα(X) do not have universal characterization. Instead, a universal characterization
can be given to a functor Exp : Sets(U)→ Sets(U) that will be later given a monad
structure. This functor has an initial algebra structure for Id+HSig where HSig is a
functor of the second order - a functor from functors to functors. The functor HSig

can be directly constructed from the binding signature Sig. Bindings correspond to
the operation on functors F 7→ F ′ where F ′(X) = F (X

∐
pt). The general theory of

initial algebras for ω-cocontinuous functors from [2] is applicable here as well and an
initial algebra Exp′′ for Id + HSig can be constructed as the colimit of the sequence
of functors (Id + HSig)

n(∅) where ∅ is the functor X 7→ ∅. Since the initial alge-
bras are unique up to a unique algebra isomorphism the sets Exp′′(X) constructed
by the colimit construction are in a bijective correspondence with the sets Exp(X)
of α-equivalence classes of expressions. The set Exp′′ are closely related to the sets
that one obtains representing α-equivalence classes using de Bruijn levels or indexes.
There is more story to tell here, but it is too much outside of the scope of the present
paper.

Next one needs to construct a monad structure on Exp′′. The corresponding theory
is developed in [27], [4] and [5]. An outline of the theory that allows one to give a
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universal characterization to the monad structure itself can be found in [20]. Not
all is understood yet and it remains an active area of research. Much of the work
that is being done today is being simultaneously formalized in the UniMath. The key
question here is what structure on H has to be specified in order to obtain a monad
structure on the initial algebra of Id+H. The main idea was introduced in [27]. In [4]
a functor with this structure is called an (abstract) signature. As became understood
later in [5], the additional condition of H being ω-cocontinuous allows one to remove
the condition of the existence of the right adjoints from the main theorem [27, Th.
15, p.170] leading to [5, Th. 48].

The case that is most important for us, that of the monads defined by the binding
signatures, has been fully formalized in the UniMath. There remains the problem
of showing that the families of sets of the JV -relative monads corresponding to this
monad are isomorphic to the sets of expressions modulo the α-equivalence and that
the monad structure that one obtains satisfies the universality conditions of [20].

The preceding discussion shows how the monads corresponding to the binding sig-
natures can be constructed by methods of category theory.

The raw syntax of a type theory can be specified by a binding signature2. For
example, the raw syntax of Streicher’s formulation of the Calculus of Constructions
of G. Huet and T. Coquand (CC-S), when brought into the standard form, consists
of six operations

∏
, Prop, Proof , λ, app and ∀ with the corresponding arities (0, 1),

(), (0), (0, 1), (0, 1, 0, 0) and (0, 1), see [32, p.157].

In view of the preceding discussion, this suggests that the class of abstract math-
ematical objects that can be used to most directly model the raw syntax of type
theories is the class of Jf -relative monads. However, in this paper we use pairs of a
Jf -relative monad RR and a left module LM (see Definition 2.31) over this monad.
Let us explain why we need such pairs and how one can generate them from data
similar to binding signatures.

To obtain the binding signature of the raw syntax from the usual presentation of
a type theory by a list of inference rules such as (1) one should make the list of
operations that these inference rules introduce with their names and their binding
arities. Often operations will be given in a non-standard form such as

∏
x : A,B

instead of
∏

(A, x.B), but for unambiguous inference rules it should be easy to see
what the corresponding standard form should be.

Among those operations will be operations that introduce types and operations that
introduce elements (also called objects) of types.

For example, in the type theory CC-S the operations
∏
, Prop and Proof introduce

types while operations λ, app and ∀ introduce elements. In addition, some arguments
of each operation must be types and some elements. However, only element variables
can be bound.

Define a restricted 2-sorted binding signature as a signature where arities of op-
erations are given by sequences ((n0, ε0), . . . , (nd−1, εd−1), ε) where ε ∈ {0, 1} with 0

2The type theories whose syntax can be specified by an algebraic signature correspond to the
“generalized algebraic theories” of John Cartmell [13], [12], [17].



14 VLADIMIR VOEVODSKY

corresponding to elements and 1 to types. Such two sorted arities of the six oper-
ations of CC-S are, correspondingly, ((0, 1), (1, 1), 1), (1), ((0, 0), 1), ((0, 1), (1, 0), 0),
((0, 1), (1, 1), (0, 0), (0, 0), 0) and ((0, 1), (1, 0), 0).

Any restricted 2-sorted binding signature defines the usual, 1-sorted one, where the
set of operations is the same and the arity function is the composition of the original
arity function with the function that maps ((n0, ε0), . . . , (nd−1, εd−1), ε) to (n0, . . . , nd).

Let Sig2 be a (restricted) 2-sorted binding signature and Sig1 the corresponding
1-sorted one. Let Z be a set such that the set of expressions with respect to Sig1 with
variables from Z is defined. Let us fix two subsets V, Y ⊂ Z such that V ∩ Y = ∅.
Consider the subset ExpSig2 [V, Y ] of expressions that conform to the additional rules
defined by the sequences (ε0, . . . , εn−1, ε) of the 2-sorted arities of the operations of
Sig2 under the assumption that a variable can be used as an element variable if and
only if it is in V and as a type variable if and only if it is in Y . This subset will be the
disjoint union of two smaller subsets ElExpSig2 [V, Y ] and TyExpSig2 [V, Y ] where the
first one consists of expressions of sort “element” and the second one of expressions of
sort “type”.

Next, for a subset X of V let Exp·Sig2(X, Y ) be the subset of ExpSig2 [V, Y ] that con-
sists of expressions where an element variable is free if and only if it belongs to X with
a similar notation for ElExp and TyExp. Let us assume in addition that V has the
freshness property. Then one can define the α-equivalence relation on Exp·Sig2 [V, Y ]
and therefore on ElExp·Sig2(X, Y ) and TyExp·Sig2(X, Y ). Let ElExpαSig2(X, Y ) and
TyExpαSig2(X, Y ) be the corresponding sets of equivalence classes.

Let us fix a set PrTy ⊂ Z such that V ∩ PrTy = ∅. This set will eventually play
the role of the set of primitive types that we add to the base type theory. Consider
X as a variable, writing RRV (X) and LMV (X) instead of ElExpαSig2(X,PrTy) and
TyExpαSig2(X,PrTy).

The structures that we get on the families of sets RRV (−) and LMV (−) are slightly
different. On RR we get the JV -relative monad structure - for any X ⊂ V we have a
function ηX : X → RRV (X) and for any X, Y ⊂ V and a function f : X → RRV (Y )
we have a function

rrX,Y (f) : RRV (X)→ RRV (Y )

On the other hand, on the LMV we do not have ηX since variables from X are not
type expressions and substitution defines for any X, Y ⊂ V and a function f : X →
RRV (Y ), a function

lmX,Y (f) : LMV (X)→ LMV (Y )

This operation makes the family of sets LMV (X) into a left module LMV = (LMV , lm)
over the JV -monad RRV = (RRV , η, rr).

Precomposing RRN and LMN with the obvious functor Φ : F → Sets(2N) using
Constructions 2.15 and 2.35 we obtain a pair (RR,LM) of a Jf -relative monad and
a left module over it.

In some type theories all types are elements of universes and moreover element
expressions are not syntactically distinguishable from type expressions. For example,
it is the case in the very important type theory MLTT79 - the Martin-Löf type
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theory from [26]. The inference rules related to the universes [26, p.172] make all
type expressions also element expressions and an element expression of any form may
be used as a type. In our notation it means that LM(X) = RR(X).

The preceding discussion shows how pairs of a Jf -relative monad RR and a left
module LM over it correspond to the raw syntax of type theories because some ex-
pressions are type expressions and some are element expressions.

To construct the pair (RR,LM) by methods of category theory without a reference
to expressions one can proceed as follows.

A restricted 2-sorted binding signature defines a monad on the category Sets(U)×
Sets(U). See [46] for a much more general case of multi sorted signatures. For the
formalization of this construction in UniMath see [6].

Choosing an object PrTy of Sets(U) and applying Construction 2.24 we obtain
a monad on Sets(U). Let us denote it by RR∗. Applying Construction 2.42 we
obtain a module LM∗ over this monad with values in Sets(U). Precomposing with
the functor Jf : F → Sets(U) using Constructions 2.15 and 2.35 one obtains a pair
(RR,LM) of a Jf -monad and a module over it.

This is how the pairs (RR,LM) can be obtained from a restricted 2-sorted binding
signature by methods of category theory.

To make it easier to compare the constructions that follow with the earlier con-
structions let us recall that the substitution structure on elements of RR(n) and
LM(n) can be easily expressed in terms of the structures of the relative monad and
a module of a relative monad. Namely, if E1, . . . , Ek ∈ RR(m), E ∈ RR(n) and 0 ≤
i1, . . . , ik ≤ n − 1 then E[E1/i1, . . . , Ek/ik] ∈ RR(m) is the element rr(f)(E) where
f : stn(n)→ RR(m) is given by f(i) = i for i 6= i1, . . . , ik and f(ij) = Ej. Exactly the
same formula with the replacement of RR(n) by LM(n) describes T [E1/i1, . . . , Ek/ik]
for T ∈ LM(n).

This completes a large section of our introduction. We can now view the α-
equivalence classes of the type and element expressions with the given sets of free
variables as mathematical objects.

Next, we need to find a way to view as a mathematical object the structure formed
by the five kinds of the Martin-Löf sentences (2)-(6).

Given a sentence of the form (2) we can define a sentence of the form (3) by
forgetting the name of the last variable in the context and moving the last type
expression to the right hand side of the B symbol. To perform a construction in the
opposite direction one considers not only expressions in the sentences, but also the
sentences themselves up to the α-equivalence, i.e., up to the renaming of the variables
x0, . . . , xn−1. This allows us to assume that these variables are always chosen to be
0, . . . , n − 1 ∈ N. Then we have a canonical choice for the next variable which will
be non-equal to any of the preceding ones. Therefore, given a sentence of the form
(3) we can define a sentence of the form (2) by adding the type expression T to the
context with the variable d attached to it. Together with the first construction, it
defines a bijection between sentences of the first kind and sentences of the second and
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allows us to restrict our attention to sentences of four kinds:

[2017.03.30.eq1]x0 : T0, . . . , xn−1 : Tn−1B ok(12)
[2017.03.30.eq2]x0 : T0, . . . , xn−1 : Tn−1B t : T(13)
[2017.03.30.eq3]x0 : T0, . . . , xn−1 : Tn−1B T ≡ T ′(14)
[2017.03.30.eq4]x0 : T0, . . . , xn−1 : Tn−1B t ≡ t′ : T(15)

Generalizing and abstracting element expressions to elements of the sets RR(n) for
a Jf -relative monad RR and type expression to elements of the sets LM(n) for a
module LM over this monad, we see that

(1) the set of sentences of kind (12) defines a subset B in the set

B(RR,LM) =
∐
n≥0

n−1∏
i=0

LM(i)

(2) the set of sentences of kind (13) defines a subset B̃ in the set

B̃(RR,LM) =
∐
n≥0

(
n−1∏
i=0

LM(i))×RR(n)× LM(n)

(3) the set of sentences of kind (14) defines a subset Beq in the set

Beq(RR,LM) =
∐
n≥0

(
n−1∏
i=0

LM(i))× LM(n)× LM(n)

(4) the set of sentences of kind (15) defines a subset B̃eq in the set

B̃eq(RR,LM) =
∐
n≥0

(
n−1∏
i=0

LM(i))×RR(n)×RR(n)× LM(n)

Next, we need to construct from (RR,LM), B, B̃, Beq and B̃eq a C-system CC.
This construction should be compatible with the constructions outlined in earlier
papers, such as the construction of the category with families outlined in [21]. In
particular, the set of objects of CC should be defined together with an isomorphism
to the quotient set B/ ∼ of the set B by the equivalence relation defined by the set
Beq according to the rue that (T0, . . . , Tn−1) is equivalent to (T ′0, . . . , T

′
n′−1) if and

only if n′ = n and the sequences defined by the table (7) are in Beq.

Hofmann and some other authors suggest to directly construct the set of morphisms
and all the required structures using the subsets B̃ and B̃eq. Already the first step,
the definition from B̃ of a set that will later have to be factorized by an equivalence
relation coming from B̃eq to produce the set of morphisms is non-trivial, c.f [21,
Def. 2.11, p.97]. Constructing the composition and proving its properties such as the
associativity represents additional difficulties.

We proceed in a different manner. Instead of starting with B/ ∼ and building the
C-system structure on it, we will construct a C-system C(RR,LM), which knows
nothing about the subsets B,B̃,Beq,B̃eq, and then use the results of [43] to show
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how any quadruple of subsets B,B̃,Beq,B̃eq, satisfying certain properties, defines a
sub-quotient C-system of C(RR,LM). This sub-quotient will be the term model
C-system of our type theory.

The conditions on the B-subsets will be seen to be the conditions many of which
have been long known as the “structural properties” that the valid sentences of all
type theories must satisfy. By approaching them from the direction of [43] we will
see why these particular conditions are necessary and sufficient for a type theory to
“make sense”.

For p : X → Y in a category, let sec(p) = {s : Y → X | s ◦ p = IdX}. Elements
of sec(p) are called sections of p. To any C-system CC one associates a pair of sets
(Ob(CC), Õb(CC)) where Ob(CC) is the set of objects of the category underlying
CC and where
(16)

[2017.02.04.eq1]Õb(CC) = {s ∈Mor(CC) | s ∈ sec(pcodom(s)), l(codom(s)) > 0}

or, in words, where Õb(CC) is the set of sections of the non-trivial p-morphisms of
CC. When CC is clear from the context we will abbreviate Ob(CC) and Õb(CC) to
Ob and Õb respectively.

The sets (Ob, Õb) are equipped with a system of operations (l, ft, ∂, T, S, T̃ , S̃, δ).
Pairs of sets equipped with operations of such form are called (unital) pre-B-systems
(c.f. [?]). The first main result of [43], Proposition 4.2, shows how to construct from a
sub-pre-B-system (B, B̃) of (Ob, Õb) a sub-C-system of CC whose associated pre-B-
system is (B, B̃). The second main result of that paper, Proposition 5.4, shows how
to construct from a pair of equivalence relations (∼,≈) on Ob and Õb respectively
that satisfies certain conditions, a quotient C-system of CC whose associated pre-B-
system is (Ob/ ∼, Õb/approx). These conditions are shows in Proposition ?? of the
present paper to be compatible with isomorphisms of pre-B-systems.

After defining C(RR,LM) in Sections ?? and ?? we define, in Construction ??, a
pre-B-system structure on the sets (B(RR,LM), B̃(RR,LM)) and, in Constrcution
??, an isomorphism between this pre-B-system and the pre-B-system of C(RR,LM).

Using this isomorphism we formulate the conditions on subsets B ⊂ B(RR,LM)

and B̃ ∈ B̃(RR,LM) that are necessary and sufficient for such a pair to correspond
to a sub-C-system of C(RR,LM).

Next, we construct, for any subsets B, B̃ and Beq, B̃eq a pair of relations ∼ and ≈
on B and B̃ respectively and show under which condition on Beq, B̃eq the transport of
these relations to the subsets of (Ob(C(RR,LM)), Õb(C(RR, LM))) corresponding
to B, B̃, satisfy the conditions of [43, Prop. 5.4] and therefore define a (regular)
quotient of the C-system corresponding to (B, B̃).

Summing it up in Construction ?? we obtain a construction, for any four subsets
B,B̃,Beq,B̃eq satisfying certain condition, of a C-system. This is the final construc-
tion of the paper.
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It should be possible to approach this construction in a more direct way. First,
one would define the concept of a B-system as a pre-B-system whose operations
satisfy some axioms. Next one would show that for a C-system CC the pre-B-system
(Ob(CC), Õb(CC)) is a B-system and that the mapping

CC 7→ (Ob(CC), Õb(CC))

is the object component of a functor from the category of C-systems to the category
of B-systems with obviously defined homomorphisms as morphisms. Next, one would
construct, using in particular an abstract analog of [21, Def. 2.11], a functor in the
opposite direction, from B-systems to C-systems. Finally, one would construct two
functor isomorphisms extending this pair of functors to an equivalence between the
categories of C-systems and B-systems.

Then one would prove that for any RR, LM the pre-B-system structure that we
define on (B(RR,LM), B̃(RR,LM)) is a B-system structure. A sub-pre-B-system of
a B-system is a B-system. Therefore the subsets (B, B̃) should define a B-system and
the relations (∼,≈) constructed from the subsets (Beq, B̃eq) should be a congruence
relation such that the quotients (B/ ∼, B̃/ ≈) again carry a structure of a B-system.
Finally, applying the inverse functor to this B-system we would obtain a C-system
that will be the C-system corresponding to the quadruple of sets B,B̃,Beq and B̃eq.

Such a direct construction would probably be more satisfying than the one that
we provide. However, it would require a lot of non-trivial work and, as far as the
goal of constructing a C-system from the subsets B,B̃,Beq and B̃eq, will give the
same result as our less direct, but more simple approach. Still, defining B-systems
and constructing an equivalence between the categories of C-systems and B-systems
is important and we plan to address it in future papers. The approach that we take
here, using the results of [43] instead, gives us a rigorous construction that can be
completed today.

Note: Ignore the rest of the introduction

To construct the regular sub-quotient of C(RR,LM) that corresponds to the type
system generated by the given system of inference rules one uses the main results,
Propositions 4.3 and 5.4, of [43]. To use these propositions to obtain a sub-quotient
of a C-system CC one should provide a pair of subsets B ⊂ Ob(CC), B̃ ⊂ Õb(CC)

that is closed under operations (pt, ft, ∂, T̃ , S̃, δ) that are defined on the pair of sets
(Ob(CC), Õb(CC)) associated with any C-system [43, Prop. 4.3] and a pair of equiv-
alence relations on (B, B̃) that satisfy the conditions of [43, Prop. 5.4]. The most
important conditions of [43, Prop. 5.4] are connected to the behavior of the equiva-
lence relations under the restriction of the operations (pt, ft, ∂, T̃ , S̃, δ) to (B, B̃).

We defer the detailed descriptions both of the step preceding the one described here
and of the one following it to future papers. In the remaining part of the introduction
we describe the content of the paper without further references to type theory.

We start the paper with two sections where we introduce some constructions ap-
plicable to general C-systems.
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On the sets of objects of any C-system one can consider the partial ordering defined
by the condition that X ≤ Y if and only if l(X) ≤ l(Y ) and X = ftl(Y )−l(X)(Y ). In
the first section we re-introduce some of the objects and constructions defined in [43]
using the length function using this partial ordering instead. This allows to avoid
the use of natural numbers in some of the arguments that significantly simplifies the
proofs.

In the second section we construct for any C-system CC and a presheaf F on
the category underlying CC a new C-system CC[F ] that we call the F -extension of
CC. The C-systems of this form remind in some way the affine spaces over schemes in
algebraic geometry. While the geometry of affine spaces in itself is not very interesting
their sub-spaces encompass all affine algebraic varieties of finite type . Similarly,
while the C-systems CC[F ] look to be not very different from CC their sub-systems
and more generally regular sub-quotients, even in the case of the simplest C-systems
CC = C(RR) corresponding to Lawvere theories (see Section ??), include all of the
term C-systems of type theories.

Regular sub-quotients of any C-system CC are classified by quadruples (B, B̃,∼,')
of the following form.

Let Õb(CC) be the set of sections of the p-morphisms of CC, i.e., the subset
in Mor(CC) that consists of morphisms s such that dom(s) = ft(codom(f)) and
s ◦ pcodom(f) = Iddom(f). The sets Ob(CC) and Õb(CC) are called the B-sets of a
C-system and can also be denoted as B(CC) and B̃(CC).

The first two components B and B̃ of the quadruple are subsets in the sets Ob(CC)

and Õb(CC) respectively. The next two components are equivalence relations on B
and B̃. To correspond to a regular sub-quotient the pair (B, B̃) should be closed under
the eight B-system operations on (B(CC), B̃(CC)) and the equivalence relations of
the pair (∼,') should be compatible with the restrictions of these eight operations
to (B, B̃) as well as to satisfy three additional simple conditions (see [43, Proposition
5.4]) that involve the length function l : B → N on B.

Therefore, in order to be able to describe regular sub-quotients of a C-system one
needs to know the B-sets of this C-system, the length function and the action of the
eight B-system operations on these sets. Such a collection of data is called a pre-
B-system (see [36]). The main result of this paper is a detailed description of the
pre-B-systems of the form (B(CC[F ]), B̃(CC[F ])) for an important particular class
of “coefficient” C-systems CC (see below).

In Section ?? we first remind the notion of a relative monad on a functor J : C → D
that was introduced in [7, Def.1, p.299] and considered in more detail in [8]. Then we
focus our attention on relative monads over the functor Jf that is defined as follows.

For two sets X and Y let Fun(X, Y ) be the set of functions from X to Y . Let
stn(n) be the standard set with n elements that we take to be the subset of N that
consists of numbers < n. Consider the category F such that Ob(F ) = N and

Mor(F ) = ∪m,nFun(stn(m), stn(n))
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The functor Jf is the obvious functor from F to the category of sets.

In [41] we constructed an equivalence between the category of Jf -relative monads
and the category of Lawvere theories whose component functor from the relative
monads to Lawvere theories is denoted RML. A key component of this equivalence
is the construction of the Kleisli category K(RR) of a relative monad RR given in
[8]. Most of Section ?? is occupied by simple computations in K(RR) for Jf -relative
monads RR.

In [39] we constructed an isomorphism between the category of Lawvere theories
and the category of l-bijective C-systems - the C-systems CC where the length func-
tion Ob(CC) → N is a bijection. In Section ?? we consider the C-system C(RR)
corresponding to the Lawvere theory RML(RR) defined by a Jf -relative monad
RR. The underlying category of this C-system is K(RR)op. The main result of this
section is the description of the B-sets of C(RR) and of the actions of the B-system
operations on these sets.

In the final Section ?? we apply the construction of Section ?? to C(RR) taking
into account that the functors LM : C(RR)op → Sets are the same as the functors
K(RR)→ Sets that are the same as the relative (left) modules over Jf . In (??) and
Construction ?? we compute the B-sets B(C(RR,LM)) and B̃(C(RR,LM)) and in
Theorem ?? the action of the B-system operations on these sets.

In the next paper we will connect these computations to the conditions that the
valid judgements of a type theory must satisfy in order for the term C-system of this
type theory to be defined.

We use neither the axiom of excluded middle nor the axiom of choice. The paper
is written in the formalization-ready style and should be easily formalizable both in
the UniMath and in the ZF.

We use the diagrammatic order of composition, i.e., for morphisms f : X → Y and
g : Y → Z we write their composition as f ◦ g.

A category C is always understood as a pair of sets Ob(C), Mor(C) connected by
the operations of domain, codomain, identity and composition where composition is
a partially defined operation. A functor F : C → D is a pair of functions FOb :
Ob(C) → Ob(D), FMor : Mor(C) → Mor(D) satisfying the well known conditions.
We emphasize it here because it is also possible to define a category starting with a
set Ob(C) and a family of sets MorC(X, Y ) parametrized by X, Y ∈ Ob(C) where a
family is understood in the sense of [42, Remark 3.9]. These two concepts are a little
different from each other. For example there exists a category with Ob(C) = {0, 1}
and MorC(a, b) = {0} for all a, b ∈ Ob(C), in the sense of the second definition, but
not in the sense of the first. Indeed, any category in the sense of the first definition
has the property that

Mor(X, Y ) ∩Mor(X ′, Y ′) = ∅
if X 6= X ′ or Y 6= Y ′. This property makes it necessary sometimes to perform
additional constructions such as ...
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Note that the expression “for all x in A, a y(x) in B(x)” is a form of saying “a
family y, parametrized by x in A, such that y(x) is in B(x)”. For a way to define a
family of sets in the ZFC without a universe see [42, Remark 3.9]. Families of sets do
not form a set. However, families of sets with a given parameter set and such that all
the sets of the family are subsets of given set do. A formulation in terms of iterated
families can be used for “for all” expressions where there are several parameters such
as in Definition 2.5(3). Similarly, a “collection of data”, is understood as an n-tuple,
which is understood as an iterated pair (. . . (−,−),−) . . . ,−).

We fix a universe U without making precise what conditions on the set U we require.
It is clear that it is sufficient for all constructions of this paper to require U to be a
Grothendieck universe. However, it is likely that a much weaker set of conditions on
U is sufficient for our purposes. In all that follows we write Sets instead of Sets(U).

This is one the papers extending the material which I started to work on in [34].
I would like to thank the Institute Henri Poincare in Paris and the organizers of
the “Proofs” trimester for their hospitality during the preparation of the first version
of this paper. The work on this paper was facilitated by discussions with Benedikt
Ahrens, Richard Garner and Egbert Rijke.

2. Relative monads and left modules over relative monads

2.1. Monads and relative monads. Let us start by reminding the definition of a
monad in the form that became standard after MacLane’s textbook [25, p.133] and
that we will call the monoidal form. For a category C we often write X ∈ C instead
of X ∈ Ob(C). For a functor F = (FOb, FMor) from C to D we often write F (X)
instead of FOb(X) for X ∈ Ob(C) and F (f) instead of FMor(f) for f ∈ Mor(C). We
emphasize these standard conventions here because below we will sometimes work
with the object and morphism components of a functor separately in which case the
subscripts Ob and Mor will need to be enforced.

Definition 2.1. [2017.04.01.def1] A monad in the monoidal form on a category C
is a triple R = (R, η, µ) where R : C → C is a functor and η : IdC → R, µ : R◦R→ R
are natural transformations such that for any X ∈ C one has

(1) [2017.04.19.eq7] R(µX) ◦ µX = µR(X) ◦ µX (“associativity”),
(2) [2017.04.19.eq8] ηR(X) ◦ µX = IdR(X) and R(ηX) ◦ µX = IdR(X) (two “unity

axioms").

We will omit the qualification “in the monoidal form” when it is clear from the
context.

The following definition specifies objects that we will call “monads in the Kleisli
form". To the best of my knowledge it explicitly appeared in the first time in the
groundbreaking paper by Eugenio Moggi [28].

Definition 2.2. [2017.04.13.def1] A monad in the Kleisli form on a category C is
a triple RR = (RROb, η, rr) where

(1) [2017.04.19.eq1] RROb : Ob(C)→ Ob(C) is a function,
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(2) [2017.04.19.eq2] η is a family, parametrized by X ∈ Ob(C), of morphisms
ηX : X → RROb(X),

(3) [2017.04.19.eq3] rr is a family, parametrized by pairs X, Y ∈ Ob(C), of
functions

rrX,Y : MorC(X,RROb(Y ))→MorC(RROb(X), RROb(Y ))

such that

(4) [2017.04.19.eq4] for all X ∈ C, rrX,X(ηX) = IdRROb(X),
(5) [2017.04.19.eq5] for all X, Y , f : X → RROb(Y ), ηX ◦ rrX,Y (f) = f ,
(6) [2017.04.19.eq6] for all X, Y, Z, f : X → RROb(Y ), g : Y → RROb(Z),

rrX,Y (f) ◦ rrY,Z(g) = rrX,Z(f ◦ rrY,Z(g))

We will omit the qualification “in the Kleisli form” when it is clear from the context.
Definition 2.1 is equivalent to the Definition 2.2 in the precise sense that is specified
by Problem 2.3 and following it Construction 2.4.

Problem 2.3. [2017.01.04.prob1] Given a function RROb : Ob(C)→ Ob(C) and a
family η, parametrized by X ∈ Ob(C), of morphisms ηX : X → RROb(X), to construct
a bijection between the following two sets:

(1) the set of pairs of the form
(1.1) a function RRMor : Mor(C)→Mor(C),
(1.2) a family, parametrized by X ∈ Ob(C), of morphisms

µX : RROb(RROb(X))→ RROb(X)

such that ((RROb, RRMor), η, µ) is a monad on C in the monoidal form, that
is,

(1.3) RR = (RROb, RRMor) is a functor,
(1.4) (RROb, µ) satisfies condition (1) of Definition 2.1,
(1.5) (RROb, η, µ) satisfies condition (2) of Definition 2.1,
(1.6) η is a natural transformation IdC → RR,
(1.7) µ is a natural transformation RR ◦RR→ RR,

(2) the set of families, parametrized by X, Y ∈ Ob(C), of functions
rrX,Y : MorC(X,RROb(Y ))→MorC(RROb(X), RROb(Y ))

such that (RROb, η, rr) is a monad on C in the Kleisli form, that is,
(2.1) (RROb, η, rr) satisfies condition (4) of Definition 2.2,
(2.2) (RROb, η, rr) satisfies condition (5) of Definition 2.2,
(2.3) (RROb, rr) satisfies condition (6) of Definition 2.2.

We have intentionally expanded the definitions of monads in the monoidal form and
monads in the Kleisli form to show that that the expanded definition of the latter
is much shorter than that of the former. Monads are used extensively in computer
science, but almost always in the Kleisli form and the fact that Kleisli form is much
more concise than the monoidal form may be one of the reasons.

On the other hand, it is likely that monads in the Kleisli form have not been
widely known among mathematicians because they are defined not as functors with a
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structure, but as functions between sets of objects with a structure. In particular, it is
not obvious from their definition that monads in the Kleisli form can be transported
along equivalences of categories.

We devote so much attention to these two definitions because they provide one of
the clearest examples of how the same objects can have different and often mutually
incomprehensible definitions in the parallel realities of mathematics and that part of
theoretical computer science which is known as Theoretical Computer Science B.

We now outline the construction for Problem 2.3

Construction 2.4. [2017.01.04.constr1] To go from the monoidal form to the
Kleisli form, one defines, for X, Y ∈ Ob(C) and f : X → RROb(Y )

(17) [2017.04.17.eq1]rrX,Y (f) = RRMor(f) ◦ µY
To go from the Kleisli form to the monoidal form one defines

(1) for f : X → Y in Mor(C)
(18) [2017.04.17.eq2]RRMor(f) = rrX,Y (f ◦ ηY )

(2) for X ∈ Ob(C)
(19) [2017.04.17.eq2]µX = rrRROb(X),X(IdRROb(X))

We leave the verification of the conditions and the proof that these functions are
mutually inverse to the formally verified version of the paper. �

For a monad RR in the Kleisli form we let RRM denote the corresponding monad
in the monoidal form and a monad R in the monoidal form we let RK denote the
corresponding monad in Kleisli form.

The notion of a relative monad arises very naturally for monads in the Kleisli form.
It was introduced in [7, Def.1, p.299] and considered in more detail in [8]. Let us
remind it here.

Definition 2.5. [2015.12.22.def1] Let J : C → D be a functor. A relative monad
RR on J or a J-relative monad or a J-monad is a triple (RROb, η, rr) where

(1) RROb : Ob(C)→ Ob(D) is a function,
(2) for all X in C, a morphism ηX : J(X)→ RROb(X) in D,
(3) for all X, Y in C and f : J(X)→ RROb(Y ) in D, a morphism in D

rrX,Y (f) : RROb(X)→ RROb(Y )

such that the following conditions hold:

(4) for all X ∈ C, rrX,X(ηX) = IdRROb(X),
(5) for all X, Y ∈ C and f : J(X)→ RROb(Y ), ηX ◦ rrX,Y (f) = f ,
(6) for all X, Y, Z ∈ C, f : J(X)→ RROb(Y ) and g : J(Y )→ RROb(Z),

rrX,Y (f) ◦ rrY,Z(g) = rrX,Z(f ◦ rrY,Z(g))

Sometimes one writes f ∗ instead of rrX,Y (f). It makes long computations look
nicer, but one should remember that the notation f ∗ is under-specified because f ∗
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depends not only on f but also on X and Y and it is possible that for example
RROb(Y1) = RROb(Y2) while Y1 6= Y2.

Problem 2.6. [2016.01.15.prob1] Given a J-relative monad RR = (RROb, η, rr) to
construct a function RRMor : Mor(C) → Mor(D) such that RRf = (RROb, RRMor)
is a functor.

Construction 2.7. [2016.01.15.constr1]For f : X → Y in C set

(20) [2017.04.05.eq3]RRMor(f) = rrX,Y (J(f) ◦ ηY )

The proofs of the composition and the identity axioms of a functor are straightfor-
ward. �

An IdC-relative monad will be called an endo-monad. An endo-monad is precisely
a monad on the corresponding category given in the Kleisli form. This permits us to
call, sometimes, the endo-monads simply monads. As the explicit form of functions
(−)K and (−)M defined in Construction 2.4 shows that for R = (R, η, µ) we have
RK = (ROb, η, rr) and for RR = (RROb, η, rr) we have RRM = (RRf , η, µ). In
particular, since (RK)M = R, we have

(21) [2017.04.05.eq2](RK)f = R

The construction of the Kleisli category of a monad3 was extended to the case of
relative monads in [8, p.8] (see also [41, Constr. 2.9]). Since it plays an important
role in what follows let us remind the definition of the corresponding category data
here without proving that it actually defines a category.

Problem 2.8. [2017.03.12.prob3] Given a functor J : C → D and a J-monad
RR = (RR, η, rr) to construct a category K(RR) that will be called the Kleisli cate-
gory of RR.

Construction 2.9. [2017.03.12.constr3] We set Ob(K(RR)) = Ob(C) and

Mor(K(RR)) = qX,Y ∈K(RR)Mor(J(X), RR(Y ))

For X, Y ∈ K(RR), we will identify the set of morphisms in K(RR) from X to Y
with the set Mor(J(X), RR(Y )) by means of the obvious bijections.

For X ∈ Ob(C) we set IdX,K(RR) = ηX .

For f ∈MorD(J(X), RR(Y )) and g ∈MorD(J(Y ), RR(Z)) we set

(22) [2017.04.05.eq1]f ◦K(RR) g := f ◦D rrY,Z(g)

�

Problem 2.10. [2017.04.05.prob2] In the context of Problem 2.8, to construct a
functor

EtRR : C → K(RR)

3Actually Kleisli, in [23], introduced the corresponding category for what we would today call a
comonad.
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Construction 2.11. [2017.04.05.constr2] We omit the index RR at Et. We set
EtOb = Id. For a morphism f : X → Y in C we set

(23) [2017.04.09.eq2]EtMor(f) = J(f) ◦ ηY
For f = IdX we have

Et(IdX) = J(IdX) ◦ ηX = IdJ(X) ◦ ηX = ηX = IdX,K(RR)

This proves the identity axiom. For f : X → Y , g : Y → Z we have

Et(f ◦ g) = J(f ◦ g) ◦ ηZ = J(f) ◦ J(g) ◦ ηZ
and

Et(f) ◦ Et(g) = (J(f) ◦ ηY ) ◦K(RR) (J(g) ◦ ηZ) =

J(f) ◦ ηY ◦ rrY,Z(J(g) ◦ ηZ) = J(f) ◦ J(g) ◦ ηZ
where the second equality is by (22) and the third by condition (2) of Definition 2.5.
This proves the composition axiom. �

Problem 2.12. [2017.04.11.prob1] Let J : C → D be a functor and RR =
(RROb, η, rr) a J-relative monad. To construct a functor RRlm : K(RR)→ D.

Construction 2.13. [2017.04.09.constr1] We set RRlm
Ob = RROb. For

f ∈MorK(RR)(X, Y ) = MorD(J(X), RROb(Y ))

where the equality is actually the bijection mentioned in the definition of K(RR), we
set RRlm

Mor(f) = rrX,Y (f).

The verification of the composition and identity axioms for (RRlm
Ob,RRlm

Mor) is
straightforward and is left for the formalized version of the paper. �

So far our only examples of relative monad were provided by the “usual” monads in
the Kleisli form, in particular, they all were endo-monads. The following construction
allows one to obtain a large class of relative monads that are not endo-monads.

Problem 2.14. [2017.02.24.prob1] Given functors F : C0 → C1, J : C1 → D and a
J-relative monad RR to construct a (F ◦ J)-relative monad F ◦(RR).

Construction 2.15. [2017.02.24.constr1]We omit the indexes Ob and Mor at F
and J . Let RR = (RROb, η, rr). We set

(24) [2017.04.11.eq3]F ◦(RR) = (F ◦(RROb), F
◦(η), F ◦(rr))

where, for for X ∈ C0

(25) [2017.04.11.eq1]F ◦(RROb)(X) = RROb(F (X)) F ◦(η)X = ηF (X)

and for X, Y ∈ C0 and f : J(F (X))→ RROb(F (Y )),

(26) [2017.04.11.eq2]F ◦(rr)X,Y (f) = rrF (X),F (Y )(f)

Let us verify conditions (1)-(3) of Definition 2.5. We write RR instead of RROb :

(1) Let X ∈ C0. Then

F ◦(rr)X,X(F ◦(η)X) = rrF (X),F (X)(ηF (X)) = IdRR(F (X)) = IdF ◦(RR)(X)
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(2) Let X, Y ∈ C0 and f : J(F (X))→ RR(F (Y )). Then

F ◦(η)X ◦ F ◦(rr)X,Y (f) = ηF (X) ◦ rrF (X),F (Y )(f) = f

(3) Let X, Y, Z ∈ C0 and

f : J(F (X))→ RR(F (Y )) g : J(F (Y ))→ RR(F (Z))

are morphisms in D. Then
F ◦(rr)X,Y (f) ◦ F ◦(rr)Y,Z(g) = rrF (X),F (Y )(f) ◦ rrF (Y ),F (Z)(g) =

rrF (X),F (Z)(f ◦ rrF (Y ),F (Z)(g)) = F ◦(rr)X,Z(f ◦ F ◦(rr)Y,Z(g))

This completes Construction 2.15. �

Lemma 2.16. [2017.04.09.l1] In the context of Problem 2.14 one has

(27) [2017.04.17.eq6](F ◦(RR))f = F ◦RRf

Proof. In what follows we omit the indexes Ob and Mor at F and J . Both the left
and right hand side of (27) are functors C0 → D. Let RR = (RROb, η, rr). Then
both of these functors on objects are given, by construction, by F ◦RROb. It remains
to show that for f :→ Y in C0 we have

(28) [2017.04.09.eq5]F ◦(RR)Mor(f) = (FMor ◦RRMor)(f)

We have

F ◦(RR)Mor(f) = F ◦(rr)((F ◦ J)(f) ◦ F ◦(η)Y ) = rrF (X),F (Y )(J(F (f)) ◦ ηF (Y ))

where the first equality is by (20) and (24) and the second by (25) and (26). On the
other hand

(FMor ◦RRMor)(f) = RRMor(F (f)) = rrF (X),F (Y )(J(F (f)) ◦ ηF (Y ))

where the second equality is by (20). This completes the proof of the lemma. �

Remark 2.17. [2017.04.09.rem1] Note that in the construction of F ◦(RR) there
participate only FOb, but not FMor. On the other hand we have (28). The explanation
for this seeming contradiction is that F ◦(RR) is a (F ◦ J)-relative monad and (F ◦
J)Mor, and, therefore FMor, participates in the definition of F ◦(RR)Mor.

Problem 2.18. [2017.03.12.prob1] Given functors F : C0 → C1 and J : C1 → D,
and a J-monad RR to construct a functor FRR : K(F ◦(RR))→ K(RR).

Construction 2.19. [2017.03.12.constr2] We set FRR,Ob = FOb. For X, Y ∈ C0

and a morphism f : J(F (X))→ RR(F (Y )) in K(F ◦(RR)) from X to Y , we set

(29) [2017.03.12.eq2]FRR,X,Y (f) = f

that is, FRR,Mor is given by the function

qX0,Y0∈C0MorD(J(F (X0)), RR(F (Y0)))→ qX1,Y1∈C1MorD(J(X1), RR(Y1))

of the form ((X0, Y0), f) 7→ ((F (X0), F (Y0)), f).

Let us show that (FRR,Ob, FRR,Mor) is a functor.

Note first that for X ∈ C0 one has

(30) [2017.03.12.eq1]IdK(F ◦(RR)),X = F ◦(η)X = ηF (X)
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where the first equality is by Construction 2.9 and the second by Construction 2.15.
The data (FRR,Ob, FRR,Mor) satisfies the identity axiom because of the equalities

FRR,X,X(IdK(F ◦(RR)),X) = FRR,X,X(ηF (X)) = ηF (X) = IdK(RR),F (X)

where the first equality is by (30), the second by (29) and the third by Construction
2.9.

Next, for X, Y, Z ∈ C0 and f : J(F (X)) → RR(F (Y )), g : J(F (Y )) → RR(F (Z))
one has

(31) [2017.03.12.eq3]f ◦KK(F ◦(RR)) g = f ◦D F ◦(rr)Y,Z(g) = f ◦D rrF (Y ),F (Z)(g)

where, again, the first equality is by Construction 2.9 and the second by Construction
2.15. The data (FRR,Ob, FRR,Mor) satisfies the composition axiom because of the
equalities

FRR,X,Z(f ◦K(F ◦(RR)) g) = FRR,X,Z(f ◦D rrF (Y ),F (Z)(g)) =

f ◦D rrF (Y ),F (Z)(g) = f ◦K(RR) g = FRR,X,Y (f) ◦K(RR) FRR,Y,Z(g)

where the first equality is by (31), the second by (29), the third by Construction 2.9
and the fourth again by (29).

This completes Construction 2.19. �

The following construction together with Construction ?? are used to extract pairs
(RR,LM) of a relative monad and a left module over it from two-sorted relative
monads such as the ones that arise from two-sorted second-order signatures, see [6].

For two functors F : C → D, F ′ : C ′ → D′ we let F � F ′ denote the corresponding
functor from C × C ′ to D × D′. If C = C ′ we let F × F ′ denote the composition
of F � F ′ with the diagonal C → C × C, that is, the functor given on objects by
X 7→ (F (X), F ′(X)). For a functor FF : C → D × D′ we let FFD and FFD′ denote
the compositions of FF with the projections from D ×D′ to D and D′ respectively.
We will also use the notation FFD when FF is only a function on objects.

Definition 2.20. [2017.04.21.def1] An object constancy structure on a functor F :
C → D is a family, parametrized by X, Y ∈ C, of morphisms νX,Y : F (X) → F (Y )
such that:

(1) [2017.04.21.eq3] for all X, νX,X = IdF (X),
(2) [2017.04.21.eq4] for all X, Y, Z, νX,Z = νX,Y ◦ νY,Z.

Note that for an object constancy structure we have, for all X, Y ∈ C,
νX,Y ◦ νY,X = νX,X = IdF (X)

νY,X ◦ νX,Y = νY,Y = IdF (Y )

that is, νX,Y and νY,X are mutually inverse and, in particular, νX,Y is an isomorphism.

For any object A of D the functor AC : C → D given on objects by AC(X) = A
and on morphisms by AC(f) = IdA has an obvious object constancy structure with
νX,Y = IdA for all X, Y . We will call it the identity object constancy structure
corresponding to A.
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Since the object constancy structure does not impose any condition on ν with
respect to morphisms of C or D, there are many other examples. Indeed, for A as
above, the identity object constancy structure is defined for any functor F , however
non-trivial on morphisms, but such that F (X) = A for all X ∈ C.

Problem 2.21. [2017.04.21.prob1] Let C,D,D′ be categories, J : C → D × D′ a
functor and RR = (RR, η, rr) a J-relative monad. Assume in addition that we are
given an object constancy structure ν on JD′ : C → D′.

To construct a structure of a JD-monad on RRD. This JD-monad will be denoted
RRD.

Construction 2.22. [2017.04.21.constr1] We need to construct:

(1) a family ηD, parametrized by X ∈ C, of morphisms ηDX : JD(X)→ RRD(X),
(2) a family parametrized by X, Y ∈ C and f : JD(X)→ RRD(Y ), of morphisms

rrDX,Y (f) : RRD(X)→ RRD(Y ),

and to prove that RRD, defined as (RRD, η
D, rrD), satisfies conditions (4), (5) and

(6) of Definition 2.2.

Let X ∈ C. Then ηX is a morphism from J(X) to RR(X). We set

(32) [2017.04.21.eq1]ηDX = prD(ηX) : JD(X)→ RRD(X)

We will also consider prD′(ηX) that we will denote by ηD′X .

Let X, Y ∈ C and f : JD(X) → RRD(Y ). We need to construct a morphism
RRD(X) → RRD(Y ). We have νX,Y : JD′(X) → JD′(Y ) and therefore we may
consider the morphism

(f, νX,Y ◦ ηD
′

Y ) : (JD(X), JD′(X)) = J(X)→ RR(Y ) = (RRD(Y ), RRD′(Y ))

and applying to it rrX,Y we obtain

rrX,Y ((f, νX,Y ◦ ηD
′

Y )) : RR(X)→ RR(Y )

We set

(33) [2017.04.21.eq2]rrDX,Y (f) = prD(rrX,Y ((f, νX,Y ◦ ηD
′

Y )))

Let X ∈ C. Then
(34)
[2017.04.23.eq1]rrX,X((ηDX , νX,X ◦ ηD

′

X )) = rrX,X((ηDX , η
D′
X )) = rrX,X(ηX) = IdRR(X)

where the first equality holds by Definition 2.20(1), the second by definition of ηD
and ηD′ , and the fourth by the property 2.2(4) of RR.

Therefore,

rrDX,X(ηDX) = prD(rrX,X((ηDX , νX,X ◦ ηD
′

X ))) = prD(IdRR(X)) = IdRRD(X)

where the first equality holds by (33), the second by (34) and the third by the defi-
nition of prD. This proves the property 2.2(4) for RRD.
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Let X, Y ∈ C and f : JD(X)→ RRD(Y ). Then

[2017.04.23.eq2]ηDX ◦ rrDX,Y (f) =

prD(ηX) ◦ prD(rrX,Y ((f, νX,Y ◦ ηD
′

Y ))) = prD(ηX ◦ rrX,Y ((f, νX,Y ◦ ηD
′

Y ))) =

(35) prD((f, νX,Y ◦ ηD
′

Y )) = f

where the first equality holds by (32) and (33), the second since prD commutes with
compositions, the third by the property 2.2(5) of RR, and the fourth by definition of
prD. This proves the property 2.2(5) for RRD.

Let X, Y, Z ∈ C, f : JD(X)→ RRD(Y ), g : JD(Y )→ RRD(Z). Then

rrX,Y ((f, νX,Y ◦ ηD
′

Y )) ◦ rrY,Z((g, νY,Z ◦ ηD
′

Z )) =

rrX,Z((f, νX,Y ◦ ηD
′

Y ) ◦ rrY,Z((g, νY,Z ◦ ηD
′

Z ))) =

rrX,Z((f ◦ prD(rrY,Z((g, νY,Z ◦ ηD
′

Z ))), νX,Y ◦ ηD
′

Y ◦ prD′(rrY,Z((g, νY,Z ◦ ηD
′

Z )))))) =

rrX,Z((f ◦ prD(rrY,Z((g, νY,Z ◦ ηD
′

Z ))), νX,Y ◦ prD′(ηY ◦ rrY,Z((g, νY,Z ◦ ηD
′

Z ))))) =

rrX,Z((f ◦ prD(rrY,Z((g, νY,Z ◦ ηD
′

Z ))), νX,Y ◦ prD′((g, νY,Z ◦ ηD
′

Z )))) =

rrX,Z((f ◦ prD(rrY,Z((g, νY,Z ◦ ηD
′

Z ))), νX,Y ◦ νY,Z ◦ ηD
′

Z )) =

rrX,Z((f ◦ prD(rrY,Z((g, νY,Z ◦ ηD
′

Z ))), νX,Z ◦ ηD
′

Z ))) =

(36) [2017.04.21.eq5]rrX,Z((f ◦ rrDY,Z(g), νX,Z ◦ ηD
′

Z ))

where the first equality holds by the property 2.2(6) of RR, the second by the
definition of composition in D×D′, the third since prD′ commutes with compositions,
the fourth by the property 2.2(5) of RR, the fifth by the definition of prD′ , the sixth
by Definition 2.20(2), and the seventh by (33).

Therefore,

rrDX,Y (f) ◦ rrDY,Z(g) = prD(rrX,Y ((f, νX,Y ◦ ηD
′

Y ))) ◦ prD(rrY,Z((g, νY,Z ◦ ηD
′

Z ))) =

prD(rrX,Y ((f, νX,Y ◦ ηD
′

Y )) ◦ rrY,Z((g, νY,Z ◦ ηD
′

Z ))) =

prD(rrX,Z((f ◦ rrDY,Z(g), νX,Z ◦ ηD
′

Z ))) =

rrDX,Z(f ◦ rrDY,Z(g))

where the first equality holds by (33), the second since prD commutes with composi-
tions, the third by (36), and the fourth again by (33). This proves the property 2.2(6)
for RRD and completes Construction 2.22. �

We want to emphasize the following particular case of Construction 2.22.

Problem 2.23. [2017.04.23.prob1] Let C,D be categories. Let RR be an endo-
monad on C × D. Let A ∈ Ob(D). To construct an endo-monad RR1,A on C.
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Construction 2.24. [2017.04.23.constr1]Let J : C → C × D be the functor given
by X 7→ (X,A) on objects and f 7→ (f, IdA) on morphisms. Consider the J-monad
J◦(RR). It satisfies the conditions of Problem 2.21 with respect to the identity
object constancy structure corresponding to A. Therefore, Constructions 2.22 applies
and we obtain a J ◦ prC-monad (J◦(RR))D. Since J ◦ prC = IdC it is an endo-
monad on C that we denote by RR1,A. Explicitly, for RR = (RR, η, rr), we have
RR1,A = (RR1,A, η

1,A, rr1,A) where:

(1) for X ∈ C, RR1,A(X) = prC(RR((X,A))),
(2) for X ∈ C, η1,A

X = prC(η(X,A)),
(3) for X, Y ∈ C, f : X → Y , rr1,A

X,Y (f) = prC(rr(X,A),(Y,A)(f, prD(η(Y,A)))).

�

Remark 2.25. The notation RR1,A emphasizes that the monad is on the first pro-
jection of the product C ×D. We can also construct, for A ∈ Ob(C), an endo-monad
RR2,A on D.

2.2. Left modules over monads and relative monads. A left module in the
monoidal form over a monad in the monoidal form is defined as follows (cf. [18,
p.222]).

Definition 2.26. [2017.04.01.def2] Let C,E be categories, R = (R, η, µ) be a monad
on C, and L : C → E a functor. A (left) R-module structure on L is a natural
transformation ρ : R ◦ L→ L such that for all X ∈ C one has:

(1) L(µX) ◦ ρX = ρR(X) ◦ ρX ,
(2) L(ηX) ◦ ρX = IdL(X).

A left R-module in the monoidal form with values in E is a pair L = (L, ρ) where
L : C → E is a functor and ρ an R-module structure on L.

Example 2.27. [2017.04.15.ex1]For a monad R = (R, η, ρ) the pair Rlm = (R, ρ)
is a left module over R.

Left modules can also be defined in Kleisli form.

Definition 2.28. [2017.04.15.def1] Let C,E be categories and RR = (RROb, η, rr)
a monad on C. A (left) RR-module with values in E in the Kleisli form is a pair
(LMOb, lm) where LMOb : Ob(C)→ Ob(E) is a function and lm is a family, parametrized
by X, Y ∈ Ob(C) of functions

lmX,Y : MorC(X,RROb(Y ))→MorE(LMOb(X), LMOb(Y ))

such that

(1) for all X ∈ C, lmX,X(ηX) = IdLMOb(X),
(2) for all X, Y, Z ∈ C, f : X → RROb(Y ), g : Y → RROb(Z),

lmX,Y (f) ◦ lmY,Z(g) = lmX,Z(f ◦ rrY,Z(g))

As in the case of monads the monoidal and Kleisli forms of left modules are equiv-
alent in the following sense.
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Problem 2.29. [2017.04.03.prob1] Given categories C, E, a monadRR = (RROb, η, rr)
on C, and a function LMOb : Ob(C)→ Ob(E) to construct a bijection between the fol-
lowing two sets:

(1) the set of pairs (LMMor, ρ) where LMMor : Mor(C) → Mor(E) is a function
such that LM = (LMOb, LMMor) is a functor and (LM, ρ) is a left RRM -
module in the monoidal form,

(2) the set of families lm, parametrized by X, Y ∈ Ob(C), of functions
lmX,Y : MorC(X,RROb(Y ))→MorC(LMOb(X), LMOb(Y ))

such that (LMOb, lm) is a left RR-module in the Kleisli form.

Construction 2.30. [2017.04.03.constr1] In one direction, given LMMor, a family
ρX : LM(RROb(X)) → LM(X) parametrized by X ∈ Ob(C), and f : X → R(Y ),
one defines

(37) [2017.04.09.eq4]lmX,Y (f) = LM(f) ◦ ρY
In the other direction, given LMOb and lm, one defines, for f : X → Y ,

(38) [2017.04.09.eq3]LMMor(f) = lmX,Y (f ◦ ηY )

and for X,
ρX = lmRROb(X),X(IdRROb(X))

We leave the verification of the conditions and the proof that these functions are
mutually inverse to the formally verified version of the paper. �

Left RR-modules in the Kleisli form with values in E are precisely the (covariant)
functors from the Kleisli category of RR to E , see below.

Left modules over relative monads were introduced in [3, Definition 9]. One can
observe by direct comparison of unfolded definitions that there is a bijection between
the set of modules over a relative monad RR with values in a category E and the
set of functors from the Kleisli category K(RR) of RR to E . Whether this bijection
is the identity bijection or not depends on how the expressions such as “collection
of data” or “family of functions” are translated into the formal constructions of set
theory. We assume that in this particular case they have been translated in a such a
way that this bijection is the identity and left modules over RR with values in E are
actually and precisely the same as (covariant) functors from K(RR) to E .

Definition 2.31. [2017.03.16.def1] Let J : C → D be a functor and RR =
(RROb, η, rr) a J-monad. A left module over RR with values in a category E is a
functor LM : K(RR)→ E, that is, a pair (LMOb, lm) where LMOb : Ob(C)→ Ob(E)
is a function and lm is a family, parametrized by X, Y ∈ Ob(C), of functions

lmX,Y : MorD(J(X), RROb(Y ))→MorE(LMOb(X), LMOb(Y ))

such that

(1) for all X ∈ C, lmX,X(ηX) = IdLMOb(X),
(2) for all X, Y, Z ∈ C, f : X → RROb(Y ), g : Y → RROb(Z),

lmX,Y (f) ◦ lmY,Z(g) = lmX,Z(f ◦ rrY,Z(g))
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We will say that LM is an RR-module if it is a left RR-module. We will say that
LM is a module over RR without specifying E if E = D.

From the unfolded definition we see that the left modules over an Id-relative monad
are exactly the same as the left modules in the Kleisli form over the corresponding
monad. Following the notation RK for the monad in the Kleisli form corresponding
to a monad R in the monoidal form, we let LK denote the module over RK in the
Kleisli form corresponding to a module L over R in the monoidal form.

Definition 2.32. [2017.04.05.def1] Let J : C → D be a functor, RR a J-monad
and LM a left module over RR with values in a category E. We define the functor
LMf : C → E corresponding to LM as the composition EtRR ◦ LM.

Explicitly, for LM = (LMOb, lm), we have

LMf
Ob = LMOb

which follows from EtRR,Ob = IdOb(C), and for f : X → Y

(39) [2017.04.11.eq5]LMf
Mor(f) = lm(J(f) ◦ ηY )

which follows from (23).

As in the case of RRf we will use the notation LMf
Ob and LMf

Mor, with or without
the subscripts Ob andMor as our preferential notation for the corresponding objects.

If R and L = (L, ρ) are a monad on C and a left module over it with values in E
given in the monoidal form then we have
(40) [2017.04.17.eq4](LK)f = L

On objects we have (LK)fOb = LOb by construction. It remains to show that

(41) [2017.04.09.eq1](LK)fMor = LMor

Indeed, for f : X → Y in Mor(C) we have

(LK)fMor(f) = LKMor(EtRK ,Mor(f)) =

LKMor(f ◦ ηY ) = LMor(f ◦ ηY ) ◦ ρY = LMor(f) ◦ (LMor(ηY ) ◦ ρY ) =

LMor(f) ◦ IdL(Y ) = LMor(f)

where the first equality is by Definition 2.32, the second by (23), the third by (37),
the fourth by the composition axiom for L and associativity of composition of E , the
fifth by Definition 2.26(1) and the sixth by the right unity axiom of E .

Example 2.33. [2017.04.15.ex2] Construction 2.13 gives us, for any J : C → D
and any J-monad RR a left module RRlm over RR with values in D. If RR =
(RROb, η, rr) then RRlm = (RROb, rr). This is the same relationship as in the case
of monads in the monoidal form where for R = (R, η, µ) we have Rlm = (R, µ).

We have
(RRlm)f = RRf

Indeed, for RR = (RROb, η, µ) both functors are given by RROb on objects and
on morphisms they also coincide by construction because (39) becomes (20) when
lm = rr.
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When J = IdC we also have

(RK)lm = (Rlm)K

Indeed, for R = (R, η, µ) we have

(RK)lm = (ROb, η, rr(RMor, µ))lm = (ROb, rr(RMor, µ))

and
(Rlm)K = (R, µ)K = (ROb, lm(RMor, µ))

and rr(RMor, µ) and lm(RMor, µ) coincide by construction because formulas (17) and
(37) become the same when RRMor = LMMor and µ = ρ.

Problem 2.34. [2017.03.12.prob2] Given functors F : C0 → C1 and J : C1 → D,
a J-monad RR and an RR-module LM with values in E to construct an F ◦(RR)-
module F ◦(LM) with values in E.

Construction 2.35. [2017.03.12.constr1] We need to construct a functorK(F ◦(RR))→
E . We define this functor as the composition FRR ◦ LM, where FRR is defined in
Construction 2.19. Explicitly, for RR = (RROb, η, rr) and LM = (LMOb, lm), we let
F ◦(LM) = (F ◦(LMOb), F

◦(lm)). In this notation we have

(42) [2017.04.17.eq7]F ◦(LMOb) = F ◦ LMOb

and

(43) [2017.04.17.eq8]F ◦(lm)X,Y = lmF (X),F (Y )

�

Lemma 2.36. [2017.04.17.l1] In the context of Problem 2.34 we have

(44) [2017.04.13.eq2](F ◦(LM))f = F ◦ LMf

Proof. The equality
(F ◦(LM))fOb = (F ◦ LMf )Ob

is by construction and to prove the equality

(45) [2017.04.13.eq1](F ◦(LM))fMor = (F ◦ LMf )Mor

we have, for f : X → Y in C0,

(F ◦(LM))fMor(f) = F ◦(lm)X,Y ((F ◦ J)(f) ◦ F ◦(η)Y ) =

F ◦(lm)X,Y (J(F (f)) ◦ ηF (Y )) = lmF (X),F (Y )(J(F (f)) ◦ ηF (Y )) =

LMf
Mor(F (f)) = (F ◦ LMf

Mor)(f)

where the first equality is by (39), the second by definition of F ◦ J and (25), the
third by (43), the fourth by (39) and the fifth by the definition of F ◦ LMf

Mor. This
completes the proof of Lemma 2.36. �

Combining the previous results we obtain a solution to the following problem that
we find convenient to formulate for the future reference.
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Problem 2.37. [2017.04.05.prob1] Let C0, C1, E be categories. Let R = (R, η, µ)
be a monad on C1 and L = (L, ρ) a left R-module with values in E. Let further
J : C0 → C1 be a functor. To construct a pair of a J-relative monad module with
values in E over it.

Construction 2.38. [2017.04.05.constr1] We take (J◦(RK), J◦(LK)). �

Note that in the notation of Problem 2.37, we have

(46) [2017.04.17.eq9]J◦(RK)f = J ◦ (RK)f = J ◦R

where the first equality is by (27) and the second by (21). Similarly,

(47) [2017.04.17.eq10]J◦(K)f = J ◦ (LK)f = J ◦ L

where the second equality is by (44) and the third by (40).

Constructions 2.15 and 2.34 show that both relative monads and left modules over
them can be “precomposed” with any functor. The left modules can also be “post-
composed” with any functor. It is done by literal post-composition. Since a left
module is a functor LM : K(RR) → E we can post-compose it with any functor
F : E → E ′ and obtain a new module that we will denote LM ◦ F . Explicitly, for
LM = (LMOb, lm) one has

LM ◦ F = (LMOb ◦ F, F (lm))

where, for X, Y ∈ C and f : J(X)→ RROb(Y ), one has

F (lm)X,Y (f) = F (lmX,Y (f))

There is an analog of Construction 2.22 for modules.

Problem 2.39. [2017.04.23.prob2] Let C,D,D′ be categories, J : C → D × D′ a
functor and RR = (RR, η, rr) a J-relative monad. Assume in addition that we are
given an object constancy structure ν on JD′ : C → D′. Let RRD be the JD-monad
specified in Construction 2.22.

To construct a structure of a RRD-module with values in D ×D′ on RR.

Construction 2.40. [2017.04.23.constr2] We need to construct a family lmD,
parametrized by X, Y ∈ C and f : JD(X) → RRD(Y ), of morphisms lmDX,Y (f) :

RR(X)→ RR(Y ), and to prove that LMD, defined as (RR, lmD), satisfies conditions
(1) and (2) of Definition 2.28.

We set:
lmDX,Y (f) = rrX,Y ((f, νX,Y ◦ ηD

′

Y ))

The proof of condition (1) of Definition 2.28 is given by (34). The proof of condition
(2) is given by (36). This completes Construction 2.40. �

We also have an analog of the special case described in Construction 2.24. Let
C,D be categories and A ∈ Ob(D). Let J1,A : C → C × D be the functor given by
X 7→ (X,A) on objects and f 7→ (f, IdA) on morphisms. In Construction 2.24 we
wrote J instead of J1,A.
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Problem 2.41. [2017.04.23.prob3] Let C,D be categories. Let RR = (RR, η, rr) be
an endo-monad on C ×D. Let A ∈ Ob(D). To construct an RR1,A-module structure
on J1,A ◦RR.
Construction 2.42. [2017.04.23.constr3]Consider the J1,A-monad J◦1,A(RR). It
satisfies the conditions of Problem 2.39 with respect to the identity object constancy
structure corresponding to A. Therefore, Constructions 2.40 applies and we obtain
a (J◦1,A(RR))C-module structure on J1,A ◦ RR. Since, by Construction 2.24, we have
RR1,A = (J◦1,A(RR))C, this provides a construction for Problem 2.41. Explicitly, if
we let (J1,A ◦RR, lm1,A) denote this module, we have, for X, Y ∈ C and f : X → Y

lm1,A
X,Y (f) = rr(X,A),(Y,A)(f, prD(η(Y,A)))

�

(partial text)
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